A combinatorial min-max theorem and minimization of pure-Horn functions

نویسندگان

  • Endre Boros
  • Ondrej Cepek
  • Kazuhisa Makino
چکیده

Introduction A Boolean function of n variables is a mapping from {0, 1} to {0, 1}. Boolean functions naturally appear in many areas of mathematics and computer science and constitute a key concept in complexity theory. In this paper we shall study an important problem connected to Boolean functions, a so called Boolean minimization problem, which aims at finding a shortest possible representation of a given Boolean function. The formal statement of the Boolean minimization problem (BM) of course depends on how the input function is represented, and how the size of the output is measured. One of the most common representations of Boolean functions are conjunctive normal forms (CNFs). There are two usual ways how to measure the size of a CNF: the number of clauses and the total number of literals (sum of clause lengths). It is easy to see that BM is NP-hard if both input and output is a CNF (for both measures of the size of the output CNF). This is an easy consequence of the fact that BM contains the CNF satisfiability problem (SAT) as its special case (an unsatisfiable formula can be trivially recognized from its shortest CNF representation). In fact, BM was shown to be in this case probably harder than SAT: while SAT is NP-complete (i.e. Σp1-complete (Cook 1971)), BM is Σp2-complete (Umans 2001) (see also the review paper (Umans, Villa, and Sangiovanni-Vincentelli 2006) for related results). It was also shown that BM is Σp2-complete when considering Boolean functions represented by general formulas of constant depth as both the input and output for BM (Buchfuhrer and Umans 2011). Due to the above intractability result, it is reasonable to

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Combinatorial Algorithms for Skew-bisubmodular Function Minimization

Huber, Krokhin, and Powell (2013) introduced a concept of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued constraint satisfaction problems over the three-value domain, and Huber and Krokhin (2014) showed the oracle tractability of minimization of skew-bisubmodular functions. Fujishige, Tanigawa, and Yoshida (2014) also showed a min-...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

MAX-CSP, Graph Cuts and Statistical Physics

Baker’s technique, which was created over three decades ago, is a powerful tool for designing polynomial time approximation schemes (PTAS) for NP-hard optimization problems on planar graphs and their generalizations. In this paper, we propose a unified framework to formulate the optimization problems where the local constraints of these problems are encoded by functions attached on the vertices...

متن کامل

Feasible Combinatorial Matrix Theory

We give the first, as far as we know, feasible proof of König’s Min-Max Theorem (KMM), a fundamental result in combinatorial matrix theory, and we show the equivalence of KMM to various Min-Max principles, with proofs of low complexity.

متن کامل

Judicious partitions and related problems

Many classical partitioning problems in combinatorics ask for a single quantity to be maximized or minimized over a set of partitions of a combinatorial object. For instance, Max Cut asks for the largest bipartite subgraph of a graphG, while Min Bisection asks for the minimum size of a cut into two equal pieces. In judicious partitioning problems, we seek to maximize or minimize a number of qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016